An apparatus is described for detecting single quanta of superfluid circulation round a fine wire in liquid helium II. The wire is stretched down the centre of a cylindrical vessel containing helium, and the circulation may be established by rotating the whole apparatus about the axis of the wire and cooling from above the $\lambda$-point. The wire can be set into transverse vibration, and the circulation round it can then be obtained from the rate of precession of the plane of vibration. The technique proves to be sufficiently sensitive for the measurement of circulations of order h/m with an accuracy of about 3 %. The method in its present form measures only an average of the circulation along the length of the wire, and it is found that this average is not quantized. Apparent circulations equal to a fraction of a quantum are attributed to quantized vortices that are attached to only a fraction of the length of the wire, and this interpretation has been confirmed by showing that an apparent circulation of exactly h/m has much greater stability than any other value. In this way the quantization of superfluid circulation in units of h/m has been experimentally verified. Observations made in the course of this work show clearly that superfluid circulations (including free vortex lines) can persist indefinitely even when the rotation of the apparatus is stopped. Values have also been obtained for the circulation round the wire as a function of the angular velocity of rotation, and it is shown from these that the energy of a free vortex line in the helium surrounding the wire may perhaps be considerably smaller than has hitherto been supposed.