Conductivity of disordered polycrystals
- 15 August 1996
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 80 (4) , 2253-2259
- https://doi.org/10.1063/1.363053
Abstract
New upper and lower bounds are constructed for the macroscopic conductivity of polycrystals with random microstructure, given the principal conductivities of the constituent crystals (and the volume fractions of phases in case of a multiphase polycrystal). The new bounds lie inside the well-known Hashin–Shtrikman ones.This publication has 16 references indexed in Scilit:
- Improved bounds on the conductivity of composites by interpolationProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1994
- Bounds on the effective shear modulus of multiphase materialsInternational Journal of Engineering Science, 1993
- Polycrystalline configurations that maximize electrical resistivityJournal of the Mechanics and Physics of Solids, 1991
- On the effective conductivity of polycrystals and a three-dimensional phase-interchange inequalityJournal of Applied Physics, 1988
- Variational bounds on the effective moduli of anisotropic compositesJournal of the Mechanics and Physics of Solids, 1988
- Bounds on the conductivity of statistically isotropic polycrystalsJournal of Physics C: Solid State Physics, 1977
- Variational treatment of the elastic constants of disordered materialsThe European Physical Journal A, 1973
- Conductivity of PolycrystalsPhysical Review B, 1963
- The Elastic Behaviour of a Crystalline AggregateProceedings of the Physical Society. Section A, 1952
- Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle .ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1929