The Mathieu Groups

Abstract
An enumeration of known simple groups has been given by Dickson [17]; to this list, he made certain additions in later papers [15], [16]. However, with but five exceptions, all known simple groups fall into infinite families; these five unusual simple groups were discovered by Mathieu [21], [22] and, after occasioning some discussion [20], [23], [27], were relegated to the position, which they still hold, of freakish groups without known relatives. Further interest is attached to these Mathieu groups in virtue of their providing the only known examples (other than the trivial examples of the symmetric and alternating groups) of quadruply and quintuply transitive permutation groups.

This publication has 0 references indexed in Scilit: