Potential of an ionic impurityin a large $^4$He cluster

Abstract
This paper presents an analysis of the motion of an impurity ion in a nanometer scale $^4$He cluster. Due to induction forces, ions are strongly localized near the center of the cluster, with a root mean squared thermal displacements of only a few \AA. The trapping potential is found to be nearly harmonic, with a frequency of 2.3(1.0) GHz for a positive (negative) ion in a He cluster of radius 5 nm. The anharmonicity is small and positive (energy increases slightly faster than linear with quantum number). It is suggested that by using frequency sweep microwave radiation, it should be possible to drive the ion center of mass motion up to high quantum numbers, allowing the study of the critical velocity as a function of cluster size.

This publication has 0 references indexed in Scilit: