Role of Gangliosides in Behavioral and Biochemical Actions of Alcohol: Cell Membrane Structure and Function

Abstract
Alcohol exerts its pharmacological effects in adult brain by altering the physicochemical properties of cellular plasma membranes. Although alcohol does induce changes in membrane lipid composition, studies to relate these alterations to the development of behavioral tolerance to alcohol and the withdrawal effects have been unsuccessful. Actions of alcohol on developing brain are even more complex. Some of the reported effects include inhibition of embryogenesis, cell migration, and differentiation, including synaptogenesis. Gangliosides have neuroprotective action against a variety of neural insults (e.g., mechanical injury, drug toxicity, or hypoxic insult). This review addresses the role and significance of gangliosides in the CNS pathophysiology of alcohol exposure, as well as the effect of changes in endogenous gangliosides on membrane structure and function. We also describe the role of exogenous gangliosides in prevention of alcohol (acute and/or chronic)-induced CNS (prenatal and postnatal) neurotoxicity through their action on cellular plasma membranes. We propose that ganglioside's neuroprotective effects against alcohol neurotoxicity involve protection and restoration of plasma membrane structure (proteins and lipids) and thereby its function (ionic homeostasis, neurotransmitter receptor-mediated signal transduction). Thus gangliosides may have potential therapeutic use in treatment of alcohol-related problems.