The Connection between Conservation Laws and Laws of Motion in Affine Spaces
- 1 March 1964
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 5 (3) , 373-378
- https://doi.org/10.1063/1.1704129
Abstract
It was pointed out recently that, for any theory describing matter as a collection of mass points in a metric space and subject to a covariant conservation law for a symmetric tensor density , the geodesic law of motion as well as the form of follow from the conservation law alone, independent of any equations obeyed by the metric. This result is shown to be valid in any affine space, independent of any equations obeyed by the affine connection; conversely, the geodesic law implies a conservation law for a singular symmetric tensor density. Similarly, the existence in any affine space of a covariant conservation law for a vector density describing a collection of point charges is shown to imply the constancy of charge, and the form of ; conversely, the constancy of charge implies a conservation law for a singular vector density. Some applications of these results are presented. An Appendix contains a discussion of the laws of motion for particles with an intrinsic dipole moment.
Keywords
This publication has 9 references indexed in Scilit:
- Lorentz-Invariant Equations of Motion of Point Masses in the General Theory of RelativityPhysical Review B, 1962
- On the Motion of Test Particles in General RelativityReviews of Modern Physics, 1949
- The variational equation of relativistic dynamicsMathematical Proceedings of the Cambridge Philosophical Society, 1940
- Classical theory of radiating electronsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938
- Test corpuscles in general relativityProceedings of the Edinburgh Mathematical Society, 1937
- Die Beharrungsgesetze in der allgemeinen RelativitätstheorieThe European Physical Journal A, 1931
- Über eine invariante Formulierung der Erhaltungssätze in der allgemeinen RelativitätstheorieThe European Physical Journal A, 1930
- Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen GesetzMathematische Annalen, 1928
- Die Grundlage der allgemeinen RelativitätstheorieAnnalen der Physik, 1916