Abstract
The development of a two-dimensional viscous incompressible flow generated from an infinitesimally thin flat plate, impulsively started or uniformly accelerated normal to the free stream is studied computationally. An adaptive numerical scheme, based on vortex methods, is used to integrate the vorticity–velocity formulation of the Navier–Stokes equations. The results of the computations complement relevant experimental works while providing us with quantities such as the vorticity field and the unsteady forces experienced by the body. For the uniformly accelerated plate the present simulations capture the development of a number of centers of vorticity along the primary separating shear layer. This phenomenon has been observed in experimental works but has not been predicted by inviscid models. The present simulations suggest that this Kelvin–Helmholtz-type instability is driven by the interaction of primary and secondary vorticity near the tips of the plate and depends on the acceleration of the plate.

This publication has 26 references indexed in Scilit: