Integrable systems and supersymmetric gauge theory
Abstract
After the work of Seiberg and Witten, it has been seen that the dynamics of N=2 Yang-Mills theory is governed by a Riemann surface $\Sigma$. In particular, the integral of a special differential $\lambda_{SW}$ over (a subset of) the periods of $\Sigma$ gives the mass formula for BPS-saturated states. We show that, for each simple group $G$, the Riemann surface is a spectral curve of the periodic Toda lattice for the dual group, $G^\vee$, whose affine Dynkin diagram is the dual of that of $G$. This curve is not unique, rather it depends on the choice of a representation $\rho$ of $G^\vee$; however, different choices of $\rho$ lead to equivalent constructions. The Seiberg-Witten differential $\lambda_{SW}$ is naturally expressed in Toda variables, and the N=2 Yang-Mills pre-potential is the free energy of a topological field theory defined by the data $\Sigma_{\gg,\rho}$ and $\lambda_{SW}$.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: