Abstract
A continuous-time model of a multigrade system is developed, which includes Poisson arrivals, interaction between grades and a leaving process. It therefore constitutes a continuous-time analogue of Pollard's hierarchical population model with Poisson recruitment. An expression is found for the first and second moments of grade size at any time. A general formulation of the joint probability generating function of the numbers in each grade is given, and the limiting distribution of grade size is shown to be Poisson.

This publication has 2 references indexed in Scilit: