Abstract
In the computation of conservation laws ${u_t} + f{(u)_x} = 0$, TVD (total-variation-diminishing) schemes have been very successful. But there is a severe disadvantage of all TVD schemes: They must degenerate locally to first-order accuracy at nonsonic critical points. In this paper we describe a procedure to obtain TVB (total-variation-bounded) schemes which are of uniformly high-order accuracy in space including at critical points. Together with a TVD high-order time discretization (discussed in a separate paper), we may have globally high-order in space and time TVB schemes. Numerical examples are provided to illustrate these schemes.

This publication has 8 references indexed in Scilit: