Parameterizations for Water Vapor IR Radiative Transfer in Both the Middle and Lower Atmospheres
- 1 April 1995
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 52 (8) , 1159-1167
- https://doi.org/10.1175/1520-0469(1995)052<1159:pfwvir>2.0.co;2
Abstract
Water vapor contributes a maximum of 1°C/day to the middle atmospheric thermal infrared (IR) cooling. This magnitude is small but not negligible. Because of the small amount of mass involved and the extremely narrow molecular absorption lines at pressures less than 1 mb, only a few existing parameterizations can compute accurately the water vapor cooling in this region. The accuracy and efficiency of two IR parameterizations are examined in this study. One is the correlated-k distribution method, and the other is the table look-up using precomputed transmission functions. Both methods can accurately compute the cooling rate from the earth's surface to 0.01 mb with an error of only a few percent. The contribution to the cooling rate at pressures <1 mb comes from a very small fraction (<0.005) of the spectrum near the centers of the absorption bands, where the absorption coefficient varies by four orders of magnitude. It requires at least 100 terms of the k-distribution function to accurately compu... Abstract Water vapor contributes a maximum of 1°C/day to the middle atmospheric thermal infrared (IR) cooling. This magnitude is small but not negligible. Because of the small amount of mass involved and the extremely narrow molecular absorption lines at pressures less than 1 mb, only a few existing parameterizations can compute accurately the water vapor cooling in this region. The accuracy and efficiency of two IR parameterizations are examined in this study. One is the correlated-k distribution method, and the other is the table look-up using precomputed transmission functions. Both methods can accurately compute the cooling rate from the earth's surface to 0.01 mb with an error of only a few percent. The contribution to the cooling rate at pressures <1 mb comes from a very small fraction (<0.005) of the spectrum near the centers of the absorption bands, where the absorption coefficient varies by four orders of magnitude. It requires at least 100 terms of the k-distribution function to accurately compu...Keywords
This publication has 0 references indexed in Scilit: