Abstract
A theoretical model of fluid flow in grinding has been developed by an analysis of fluid flow through a porous medium. Fluid tangential velocity, radial velocity, depth of penetration into the wheel, and the useful flow rate through the grinding zone are predicted by using this model. The analysis indicates that the nozzle position, nozzle velocity (or flow rate), and the effective wheel porosity are the three main factors which most significantly influence the useful flow rate through the grinding zone. A dimensionless effective wheel porosity parameter is introduced which is the ratio of the effective wheel porosity to its bulk porosity. By fitting the theoretical analysis to available experimental results, creep feed wheels were found to have much bigger dimensionless effective porosities than conventional wheels, which enhances their ability to more effectively pump fluid through the grinding zone.

This publication has 0 references indexed in Scilit: