Analysing repeated measurements data: a practical comparison of methods
- 29 June 1999
- journal article
- research article
- Published by Wiley in Statistics in Medicine
- Vol. 18 (13) , 1587-1603
- https://doi.org/10.1002/(sici)1097-0258(19990715)18:13<1587::aid-sim141>3.0.co;2-z
Abstract
A variety of methods are available for analysing repeated measurements data where the outcome is continuous. However, there is little information on how established methods, such as summary statistics and repeated measures analysis of variance (RMAOV), compare in practice with methods that have become available to applied statisticians more recently, such as marginal models (based on generalized estimating equation methodology) and multilevel models (that is, hierarchical random effects models). The aim of this paper is to exemplify the use of these methods, and directly compare their results by application to a clinical trial data set. The focus is on practical aspects rather than technical issues. The data considered were taken from a clinical trial of treatments for asthma in 240 children, in which a baseline and four post‐randomization measurements of outcomes were taken. The simplicity of the method of summary statistics using the post‐randomization mean of observations provided a useful initial analysis. However, fixed time effects or treatment–time interactions cannot be included in such an analysis, and choice of appropriate weighting when there is substantial missing data is problematic. RMAOV, marginal models and multilevel models generally provided similar estimates and standard errors for the treatment effects, although in one example with a relatively complex variance structure the marginal model produced less efficient estimates. Two advantages of multilevel models are that they provide direct estimates of variance components which are often of interest in their own right, and that they can be naturally extended to handle multivariate outcomes. Copyright © 1999 John Wiley & Sons, Ltd.Keywords
This publication has 23 references indexed in Scilit:
- Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modellingStatistics in Medicine, 1998
- A Comparison of Beclomethasone, Salmeterol, and Placebo in Children with AsthmaNew England Journal of Medicine, 1997
- Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal dataStatistics in Medicine, 1997
- The Analysis of Repeated Measures: A Practical Review with ExamplesJournal of the Royal Statistical Society: Series D (The Statistician), 1995
- A refinement to the analysis of serial data using summary measuresStatistics in Medicine, 1993
- A Toolkit for Testing for Non-Normality in Complete and Censored SamplesJournal of the Royal Statistical Society: Series D (The Statistician), 1993
- Review papers : Longitudinal studies with continuous responsesStatistical Methods in Medical Research, 1992
- Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for designStatistics in Medicine, 1992
- Analysis of serial measurements in medical research.BMJ, 1990
- Analysis of incomplete multivariate data using linear models with structured covariance matricesStatistics in Medicine, 1988