Dairy Waste Treatment with Anaerobic Stationary Fixed Film Reactors

Abstract
Cheese whey and a dilute waste from a cheese factory with a Chemical Oxygen Demand of 66,000 and 4,000 mg (COD)/L respectively, were treated at high loading rates in 0.7 to 1.2 L downflow anaerobic stationary fixed film reactors and an upflow sludge bed reactor. In downflow stationary fixed film reactors treating cheese whey, COD removal efficiencies of 97% were achieved at a loading rate of 5 kg COD/m3/day and 92% at a maximum loading rate of 22 kg COD/m3/day. With dairy plant waste, loading rates of up to 15 kg COD/m3/day were possible with COD removal efficiencies averaging 75%, decreasing slightly with increasing loading rates. In an upflow sludge bed reactor the COD removal efficiency of dairy plant waste, decreased from 87% at 5 kg COD/m3/day to 73% at 15 kg COD/m3/day. A stationary fixed film reactor treating a skim milk powder waste (4,000 ppm) could only be operated at up to 10 kg COD/m3/day with a treatment efficiency of 72%. Methane was produced from all wastes at rates corresponding to 0.32 m3 CH4 (0°C, 1 atm) per kg COD removed. Results show that stationary fixed film reactors are capable of treating dairy wastes at high loading rates and high COD removal efficiencies.

This publication has 0 references indexed in Scilit: