Open System Dynamics with Non-Markovian Quantum Trajectories

Abstract
A non-Markovian stochastic Schrödinger equation for a quantum system coupled to an environment of harmonic oscillators is presented. The ensemble average recovers the reduced density matrix without approximation and hence it allows one to determine open system dynamics with strong and non-Markovian environmental effects in a very efficient way. We demonstrate the power of our approach with several illustrative examples. First, we discuss a measurement-type situation, then a two-state system strongly coupled to a non-Markovian environment, exhibiting decays and revivals. Further examples showing the remarkable features of our new approach to non-Markovian open system dynamics are discussed, for instance, the possibility to shift the “Heisenberg cut” between system and environment.
All Related Versions