The Stellar Dynamics of Omega Centauri

Abstract
The stellar dynamics of Omega Centauri are inferred from the radial velocities of 469 stars measured with CORAVEL (Mayor et al. 1997). Rather than fit the data to a family of models, we generate estimates of all dynamical functions nonparametrically, by direct operation on the data. The cluster is assumed to be oblate and edge-on but mass is not assumed to follow light. The mean motions are consistent with axisymmetry but the rotation is not cylindrical. The peak rotational velocity is 7.9 km/s at 11 pc from the center. The apparent rotation of Omega Centauri is attributable in part to its proper motion. We reconstruct the stellar velocity ellipsoid as a function of position, assuming isotropy in the meridional plane. We find no significant evidence for a difference between the velocity dispersions parallel and perpendicular to the meridional plane. The mass distribution inferred from the kinematics is slightly more extended than, though not strongly inconsistent with, the luminosity distribution. We also derive the two-integral distribution function f(E,Lz) implied by the velocity data.

This publication has 0 references indexed in Scilit: