Whitehead products and vector-fields on spheres
- 24 October 1957
- journal article
- research article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 53 (4) , 817-820
- https://doi.org/10.1017/s0305004100032928
Abstract
In the theory of vector-spaces an ordered, ortho-normal set of r vectors is called an r-frame. Let Sn denote the unit sphere in euclidean (n+ 1)-space, where n ≥ 1. By an r-field on Sn is meant a continuous function which assigns to each point of Sn an r-frame in the tangent space at that point. If q < r we obtain a q-field from an r-field by suppressing the first r – q vectors of each r-frame. Certainly Sn admits a 0-field, and does not admit an (n+ 1)-field, since the tangent space is n-dimensional. An n-field on Sn is called a parallelism. Notice that an (n − 1)-field on Sn can always be extended to an n-field, since spheres are orientable. The problem is to determine the greatest value of r such that Sn admits an r-field.Keywords
This publication has 13 references indexed in Scilit:
- Cross-Sections of Stiefel ManifoldsProceedings of the London Mathematical Society, 1958
- Cohomologie modulo 2 des complexes d’Eilenberg-MacLaneCommentarii Mathematici Helvetici, 1953
- Note on the Whitehead ProductAnnals of Mathematics, 1953
- The Topology of Fibre Bundles. (PMS-14)Published by Walter de Gruyter GmbH ,1951
- Homologie Singuliere Des Espaces FibresAnnals of Mathematics, 1951
- Vector Fields on the n -SphereProceedings of the National Academy of Sciences, 1951
- A Generalization of the Hopf InvariantAnnals of Mathematics, 1950
- Stetige Lösungen linearer GleichungssystemeCommentarii Mathematici Helvetici, 1942
- Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer FormenCommentarii Mathematici Helvetici, 1942
- Ein toplogischer Beitrag zur reellen AlgebraCommentarii Mathematici Helvetici, 1940