Digital Image Enhancement and Noise Filtering by Use of Local Statistics
Open Access
- 1 March 1980
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- Vol. PAMI-2 (2) , 165-168
- https://doi.org/10.1109/tpami.1980.4766994
Abstract
Computational techniques involving contrast enhancement and noise filtering on two-dimensional image arrays are developed based on their local mean and variance. These algorithms are nonrecursive and do not require the use of any kind of transform. They share the same characteristics in that each pixel is processed independently. Consequently, this approach has an obvious advantage when used in real-time digital image processing applications and where a parallel processor can be used. For both the additive and multiplicative cases, the a priori mean and variance of each pixel is derived from its local mean and variance. Then, the minimum mean-square error estimator in its simplest form is applied to obtain the noise filtering algorithms. For multiplicative noise a statistical optimal linear approximation is made. Experimental results show that such an assumption yields a very effective filtering algorithm. Examples on images containing 256 × 256 pixels are given. Results show that in most cases the techniques developed in this paper are readily adaptable to real-time image processing.Keywords
This publication has 4 references indexed in Scilit:
- Image enhancement by histogram hyperbolizationComputer Graphics and Image Processing, 1977
- A Semicausal Model for Recursive Filtering of Two-Dimensional ImagesIEEE Transactions on Computers, 1977
- Real-Time Image Enhancement TechniquesPublished by SPIE-Intl Soc Optical Eng ,1976
- A New Approach to Linear Filtering and Prediction ProblemsJournal of Basic Engineering, 1960