Qualitative and quantitative analysis of granules in atrial appendage cardiocytes in different physiological states

Abstract
Atrial appendage cardiocytes of mammals, including man, contain multiple cytoplasmic granules that vary in number in different physiological states. Using morphologic and comprehensive morphometric techniques, these granules were assessed in Sprague-Dawley rats following dehydration for 5 days, volume-loading by substituting 1% NaCl as drinking water for 7 days, unilateral nephrectomy plus volume-loading for 7 days, and in late term pregnant animals (18–20 days; term ≈21 days). Although principally located in the paranuclear region, granules were observed throughout the sarcoplasm. Cytological features indicative of synthetic activity and granule formation were readily apparent in all groups with the exception of pregnant rats where they were infrequently observed. Granule contents were released by exocytosis and observed in the right appendage of control, dehydrated and nephrectomy/volume-loaded groups and left appendage of volumeloaded animals. Exocytosis was not observed in pregnant animals. By point counting, the proportional volume of cardiocytes occupied by granules (V v ) in controls was significantly greater for right than for left appendage (2.12±0.22% vs 1.29±0.16%; mean±SEM;pV v for right appendage between the control and experimental groups; for left appendage there was a significant increase inV v to 2.42±0.09% (pp<0.05) less than those of the control animals. The morphometric findings did not correlate with predictions based upon published biochemical data. In the course of this study, a previously unreported bimembranous, circular to ovoid structure was observed in the cardiocyte sarcoplasm of all animals; the nature and function of this structure is unknown.