Synchronous chaos in coupled map lattices with small-world interactions

Abstract
In certain physical situations, extensive interactions arise naturally in systems. We consider one such situation, namely, small-world couplings. We show that, for a fixed fraction of nonlocal couplings, synchronous chaos is always a stable attractor in the thermodynamic limit. We point out that randomness helps synchronization. We also show that there is a size dependent bifurcation in the collective behavior in such systems.