Abstract
The abundance ofAeromonas hydrophila was measured monthly at 29 sites in Albemarle Sound, North Carolina and its tributaries from April 1977 through July 1979. Simultaneous measurements included heterotrophic plate count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters. Using only 6 water quality parameters, multiple correlation and regression analysis of the data produced a best-fit regression which explained 38% of the variation observed inA. hydrophila density. The 6 water quality parameters included dissolved oxygen, temperature, orthophosphate, chlorophyll A trichromatic, total Kjeldahl nitrogen, and ammonia. Heterotrophic plate count bacteria and fecal coliform densities were highly correlated withA. hydrophila density, but made the model very unstable. The model was successfully tested against similar data collected for 2 other North Carolina reservoirs, Lake Norman and Badin Lake. Data from 10 sites in Badin Lake over 18 months and from 7 sites on Lake Norman over 5 months were not significantly different from the Albemarle Sound model. Conditions of water quality that may give rise to “blooms” ofA. hydrophila will simultaneously contribute to the probability of increased epizootics in fish in the southeastern United States.