The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit

Abstract
We previously reported that overexpression of the 24 kDa basic fibroblast factor (or FGF-2) isoform provides protection from the cytotoxic effect of ionizing radiation (IR). DNA double-strand breaks (DSB), the IR-induced lethal lesions, are mainly repaired in human cells by non-homologous end joining system (NHEJ). NHEJ reaction is dependent on the DNA-PK holoenzyme (composed of a regulatory sub-unit, Ku, and a catalytic sub-unit, DNA-PKcs) that assembles at sites of DNA damage. We demonstrated here that the activity of DNA-PK was increased by twofold in two independent radioresistant cell lines, HeLa 3A and CAPAN A3, overexpressing the 24 kDa FGF-2. This increase was associated with an overexpression of the DNA-PKcs without modification of Ku expression or activity. This overexpression was due to an up-regulation of the DNA-PKcs gene transcription by the 24 kDa FGF-2 isoform. Finally, HeLa 3A cells exhibited the hallmarks of phenotypic changes associated with the overexpression of an active DNA-PKcs. Indeed, a faster repair rate of DSB and sensitization to IR by wortmannin was observed in these cells. Our results represent the characterization of a new mechanism of control of DNA repair and radioresistance in human tumor cells dependent on the overproduction of the 24 kDa FGF-2 isoform.