Flow-induced deformation from pressurized cavities in absorbing porous tissues
- 1 November 1992
- journal article
- Published by Springer Nature in Bulletin of Mathematical Biology
- Vol. 54 (6) , 977-997
- https://doi.org/10.1007/bf02460662
Abstract
The behaviour of a cavity during an injection of fluid into biological tissue is considered. High cavity pressure drives fluid into the neighbouring tissue where it is absorbed by capillaries and lymphatics. The tissue is modelled as a nonlinear deformable porous medium with the injected fluid absorbed by the tissue at a rate proportional to the local pressure. A model with a spherical cavity in an infinite medium is used to find the pressure and displacement of the tissue as a function of time and radial distance. Analytical and numerical solutions for a step change in cavity pressure show that the flow induces a radial compression in the medium together with an annular expansion, the net result being an overall expansion of the medium. Thus any flow induced deformation of the material will aid in the absorption of fluid.Keywords
This publication has 30 references indexed in Scilit:
- Incompressible porous media models by use of the theory of mixturesPublished by Elsevier ,2003
- Unsteady flow induced deformation of porous materialsInternational Journal of Non-Linear Mechanics, 1991
- In-Vivo Indentation of Human SkinJournal of Biomechanical Engineering, 1990
- In vitro compression of a soft tissue layer on a rigid foundationJournal of Biomechanics, 1987
- A mixture approach to the mechanics of skinJournal of Biomechanics, 1987
- Fluid transport and mechanical properties of articular cartilage: A reviewJournal of Biomechanics, 1984
- Water transport in the arterial wall—A theoretical studyJournal of Biomechanics, 1983
- Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and ExperimentsJournal of Biomechanical Engineering, 1980
- Transient Filtration in a Porous Elastic CylinderJournal of Applied Mechanics, 1976
- General theory of tissue swelling with application to the corneal stromaJournal of Theoretical Biology, 1971