Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes
Open Access
- 9 April 2007
- journal article
- research article
- Published by Springer Nature in Genome Biology
- Vol. 8 (4) , R52
- https://doi.org/10.1186/gb-2007-8-4-r52
Abstract
Background: The 10.9× genomic sequence of Candida albicans, the most important human fungal pathogen, was published in 2004. Assembly 19 consisted of 412 supercontigs, of which 266 were a haploid set, since this fungus is diploid and contains an extensive degree of heterozygosity but lacks a complete sexual cycle. However, sequences of specific chromosomes were not determined. Results: Supercontigs from Assembly 19 (183, representing 98.4% of the sequence) were assigned to individual chromosomes purified by pulse-field gel electrophoresis and hybridized to DNA microarrays. Nine Assembly 19 supercontigs were found to contain markers from two different chromosomes. Assembly 21 contains the sequence of each of the eight chromosomes and was determined using a synteny analysis with preliminary versions of the Candida dubliniensis genome assembly, bioinformatics, a sequence tagged site (STS) map of overlapping fosmid clones, and an optical map. The orientation and order of the contigs on each chromosome, repeat regions too large to be covered by a sequence run, such as the ribosomal DNA cluster and the major repeat sequence, and telomere placement were determined using the STS map. Sequence gaps were closed by PCR and sequencing of the products. The overall assembly was compared to an optical map; this identified some misassembled contigs and gave a size estimate for each chromosome. Conclusion: Assembly 21 reveals an ancient chromosome fusion, a number of small internal duplications followed by inversions, and a subtelomeric arrangement, including a new gene family, the TLO genes. Correlations of position with relatedness of gene families imply a novel method of dispersion. The sequence of the individual chromosomes of C. albicans raises interesting biological questions about gene family creation and dispersion, subtelomere organization, and chromosome evolution.Keywords
This publication has 44 references indexed in Scilit:
- Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicansScience, 2006
- Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicansMicrobiology, 2005
- A Human-Curated Annotation of the Candida albicans GenomePLoS Genetics, 2005
- Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensisMicrobiology, 2004
- The Closely Related Species Candida albicans and Candida dubliniensis Can MateEukaryotic Cell, 2004
- Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencingGenes & Development, 2003
- A system of rapid isolation of end-DNA from a small amount of fosmid DNA, with vector-based PCR for chromosome walkingGenome, 2001
- Analysis of the chromosomal localization of the repetitive sequences (RPSs) in Candida albicansMicrobiology, 1995
- Isolation and characterization of a repeated sequence (RPS1) of Candida albicansJournal of General Microbiology, 1992
- Occurrence of Ploidy Shift in a Strain of the Imperfect Yeast Candida albicansMicrobiology, 1986