On the Sharpness of Weyl’s Estimate for Eigenvalues of Smooth Kernels
- 1 May 1985
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 16 (3) , 548-550
- https://doi.org/10.1137/0516040
Abstract
It is shown that Weyl’s estimate of $o({1 / {n^{{3 / 2}} }} )$ for the eigenvalues of any symmetric continuously differentiable kernel on a bounded region cannot be improved to $o({1 / {n^{{3 / 2}} }}\alpha _n )$ for any increasing $\alpha _n \to \infty $. The counter-example is constructed from Rudin–Shapiro polynomials.
Keywords
This publication has 4 references indexed in Scilit:
- Eigenvalues of Positive Definite KernelsSIAM Journal on Mathematical Analysis, 1983
- Séries de Fourier absolument convergentesPublished by Springer Nature ,1970
- Some theorems on Fourier coefficientsProceedings of the American Mathematical Society, 1959
- Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)Mathematische Annalen, 1912