Regulation of G1cyclin-dependent kinases in the liver: role of nuclear localization and p27 sequestration

Abstract
Recent studies suggest that cyclin D1 mediates progression of hepatocytes through G1phase of the cell cycle. The present study further examines the regulation of cyclin D1-dependent kinase activity and the interplay between cyclin D1 and other G1phase regulatory proteins during liver regeneration. After 70% partial hepatectomy in rats, there was upregulation of kinase activity associated with cyclins (A, D1, D3, and E), cyclin-dependent kinases (Cdk2 and Cdk4), and Cdk-inhibitory proteins (p27, p107, and p130). Although cyclin D1/Cdk4 complexes were more abundant in the cytoplasmic fraction after partial hepatectomy, kinase activity was detected primarily in the nuclear fraction. Cytoplasmic cyclin D1/Cdk4 complexes were activated by recombinant cyclin H/Cdk7. Because endogenous Cdk7 activity was found in the nucleus, this suggests that activation of cyclin D1/Cdk4 requires nuclear importation and subsequent phosphorylation by cyclin H/Cdk7. Recombinant cyclin E/Cdk2 was inhibited by extracts from quiescent liver, and cyclin D1 could titrate out this inhibitory activity. Induction of cyclin D1 was accompanied by increased abundance of cyclin D1/p27 complexes, and most p27 was sequestered by cyclin D1 after partial hepatectomy. Thus cyclin D1 appears to play two roles during G1phase progression in the regenerating liver: it forms a nuclear kinase complex, and it promotes activation of Cdk2 by sequestering inhibitory proteins such as p27. These experiments underscore the complexity of cyclin/Cdk regulatory networks in the regenerating liver.