Ubiquitin Pool Modulation and Protein Degradation in Wheat Roots during High Temperature Stress
- 1 March 1990
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 92 (3) , 740-746
- https://doi.org/10.1104/pp.92.3.740
Abstract
Ubiquitin, a key component in an ATP-dependent proteolytic pathway, participates in the response of various eucaryotic organisms to high temperature stress. Our objective was to determine if ubiquitin serves a similar capacity for metabolizing altered proteins in higher plants during stress. Degradation of total proteins was measured, and ubiquitin pools (free versus conjugated) were extracted with an improved protocol from wheat (Triticum aestivum L. cv Len) roots treated at 22, 27, 32, 37, and 42.degree. C for 1 hour and assayed by western blots and radioimmunoassays. Heat-shock protein synthesis was detected by in vivo labeling and autoradiography. Mean half-life of total root proteins decreased from 51 hours at 22.degree. C to 23 hours at 40.degree. C. Ubiquitin pools were extracted better and proteolysis was slowed more by the improved protocol than by a conventional procedure for plant proteins. Amounts of high molecular mass conjugates were elevated and levels of low molecular mass conjugates and free ubiquitin were depressed when roots were treated at 37 or 42.degree. C than at lower temperatures; the same high temperatures also induced synthesis of heat-shock proteins. We concluded that high temperatures increase breakdown of root proteins, which are degraded via the ubiquitin proteolytic pathway. A conjugate with an apparent molecular mass of 23 kilodaltons was tentatively identified as an ubiquitinated histone.This publication has 31 references indexed in Scilit:
- A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation.Journal of Biological Chemistry, 1988
- Characterization of a polyubiquitin gene from Arabidopsis thalianaMolecular Genetics and Genomics, 1988
- Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles.Journal of Histochemistry & Cytochemistry, 1988
- Ubiquitin in stressed chicken embryo fibroblasts.Journal of Biological Chemistry, 1988
- Demonstration of ATP-Dependent, Ubiquitin-Conjugating Activities in Higher PlantsPlant Physiology, 1987
- Heat Stress Enhances Phytohemagglutinin Synthesis but Inhibits Its Transport Out of the Endoplasmic ReticulumPlant Physiology, 1987
- Heat Inactivation of Starch Synthase in Wheat Endosperm TissuePlant Physiology, 1986
- Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without ureaAnalytical Biochemistry, 1986
- Abnormal Proteins Serve as Eukaryotic Stress Signals and Trigger the Activation of Heat Shock GenesScience, 1986
- Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates.Journal of Biological Chemistry, 1986