Electronic Structure of Carbon Nanocones

Abstract
Topology related changes in the local density of states near the apex of carbon nanocones are investigated using both tight-binding and ab initio calculations. Sharp resonant states are found to dominate the electronic structure in the region close to the Fermi energy. The strength and the position of these states with respect to the Fermi level depend sensitively on the number and the relative positions of the pentagons constituting the conical tip. Carbon nanocones are thus proposed as good candidates for nanoprobes in scanning probe microscopy.