Abstract
The Jolly-Seber method, which allows for both death and immigration, is easy to apply but often requires a larger number of parameters to be estimated tha would otherwise be necessary. If (i) survival rate, phi, or (ii) probability of capture, p, or (iii) both phi and p can be assumed constant over the experimental period, models with a reduced number of parameters are desirable. In the present paper, maximum likelihood (ML) solutions for these three situations are derived from the general ML equations of Jolly [1979, in Sampling Biological Populations, R. M. Cormack, G. P. Patil and D. S. Robson (eds), 277-282]. A test is proposed for heterogeneity arising from a breakdown of assumptions in the general Jolly-Seber model. Tests for constancy of phi and p are provided. An example is given, in which these models are fitted to data from a local butterfly population.

This publication has 0 references indexed in Scilit: