On independent sets of basis functions for irreducible representations of finite groups
- 1 March 1978
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 19 (3) , 574-576
- https://doi.org/10.1063/1.523703
Abstract
Two theorems on bases of irreducible representations of finite groups are compared. It is stressed that their validity depends upon the functional sets for which they are formulated. The first theorem, which states that there are as many linearly independent (modulo the identity representation) sets of basis functions as is the dimension of the representation, is shown to hold only if the considered functional set constitutes a field. Otherwise, more such sets are necessary as shows the second theorem (extended Noether’s theorem), which is limited to polynomial algebra. The second theorem seems to be more apt for explicit construction of functional bases.Keywords
This publication has 5 references indexed in Scilit:
- The use of the Clebsch-Gordan reduction of the Kronecker square of the typical representation in symmetry problems of crystal physics. I. Theoretical foundationsJournal of Physics C: Solid State Physics, 1976
- Typical integrity bases of abelian crystal point groupsJournal of Physics C: Solid State Physics, 1975
- Berichtigung und Ergänzung der Arbeiten „Die Richtungsabhängigkeit der Kristallenergie”︁ und „Die Richtungsabhängigkeit der Magnetostriktion”︁Annalen der Physik, 1961
- Fine structure in the optical absorption edge of anisotropic crystalsJournal of Physics and Chemistry of Solids, 1960
- Der Endlichkeitssatz der Invarianten endlicher GruppenMathematische Annalen, 1915