A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: Experiment and theory
- 15 June 1988
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 88 (12) , 7942-7951
- https://doi.org/10.1063/1.454251
Abstract
This paper presents a combined experimental and theoretical study of the hyper‐Raman spectrum of pyridine adsorbed onto roughened silver electrodes. The surface enhanced hyper‐Raman spectra (SEHRS) were measured using a focused cw mode‐locked Nd:YAG laser with a peak power density of approximately 107 W/cm2 . Dominant bands in the pyridine spectra are the same (totally symmetric) bands as have been seen in the corresponding Raman (SERS) spectrum, although the relative intensities are different. To interpret these spectra, we present a semiempirical molecular orbital method for determining excitation energies, polarizability derivatives, and hyperpolarizability derivatives that is based on the π‐electron Pariser–Parr–Pople (PPP) method. An empirical molecular force field is used to derive vibrational information, and the accuracy of the spectra is assessed by comparison with normal Raman spectra for liquid pyridine and with SERS spectra. The resulting SEHRS spectra are in good agreement with the measured spectra, particularly with respect to the intensity changes in the dominant lines in going from SERS to SEHRS. In addition, the theoretical/experimental comparisons indicate that SEHRS is more sensitive to adsorbate orientation than is SERS since the nontotally symmetric modes are predicted to be comparable in SEHRS (but not SERS) intensity to the totally symmetric modes for orientations other than perpendicular. Most important, a comparison of theoretical and experimental SEHRS/SERS ratios suggests that the enhancement factor associated with SEHRS is on the order of 1013 which is much larger than the 106 enhancement seen for SERS.Keywords
This publication has 51 references indexed in Scilit:
- Surface-enhanced spectroscopyReviews of Modern Physics, 1985
- Vibrational spectra of C2ν deuterium substituted pyridines. 4—pyridine‐2,3,5,6‐d4 and pyridine‐d5Journal of Raman Spectroscopy, 1980
- Vibrational spectra of C2ν deuterium substituted pyridines. 3—pyridine‐3,5‐d2 and pyridine‐3,4,5‐d3Journal of Raman Spectroscopy, 1980
- Vibrational spectra of C2v deuterium substituted pyridines. 2—Pyridine, pyridine‐4‐d, pyridine‐2,6‐d2 and pyridine‐2,4,6‐d3Journal of Raman Spectroscopy, 1980
- Origin of the nonlinear second-order optical susceptibilities of organic systemsPhysical Review A, 1979
- Vibrational perturbation: A chemical aid to assignment. I—Fermi resonance in the ν8 region of isotopic pyridinesJournal of Raman Spectroscopy, 1979
- Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation TheoryReviews of Modern Physics, 1965
- Spectroscopic and thermodynamic studies of pyridine compounds. Part 4.—Normal co-ordinate calculations for pyridine-2,6-d2, pyridine-3,5-d2and pyridine-4-d1Transactions of the Faraday Society, 1963
- The force field, vibration frequencies, normal co-ordinates, infra-red and Raman intensities for benzenePhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955
- New Developments in Molecular Orbital TheoryReviews of Modern Physics, 1951