The Cleavage of Nucleic Acids in Reversed Micelles Using Site Specific Endonucleases

Abstract
Plasmid and λ DNA molecules of between 2.2 and 48.5 kb pairs can be solubilised in n-hexane containing the surfactant sodium dioctyl sulfosuccinate (AOT) and aqueous buffers. Linear λ phage DNA fragments (2.2–23.1 kb pairs) and intact λ bio 1 DNA (48.5 kb pairs) are efficiently cleaved by Bam HI and Em RI in systems containing 100 mM AOT. Under these conditions, λ bio 1 DNA undergoes regioselective restriction by Hind III at only one site but is completely cleaved when the surfactant concentration is lowered to 50 mM. Covalent closed circular plasmid DNA (pUC8, 2.73 kb pairs) is only partially linearised by Eco RI and Bam HI in reversed micelles; Hae II cleavage affords both complete and partial restriction fragments. The results suggest that the tertiary structures adopted by substrate DNA in reversed micelles influence the availability of restriction sites.
Keywords