Multiphoton detachment ofH. II. Intensity-dependent photodetachment rates and threshold behavior—complex-scaling generalized pseudospectral method

Abstract
We extend our previous perturbative study of the multiphoton detachment of H [Phys. Rev. A 48, 4654 (1993)] to stronger fields by considering the intensity-dependent photodetachment rates and threshold behavior. An accurate one-electron model potential, which reproduces exactly the known H binding energy and the low-energy e-H(1s) elastic-scattering phase shifts, is employed. A computational technique, the complex-scaling generalized pseudospectral method, is developed for accurate and efficient treatment of the time-independent non-Hermitian Floquet Hamiltonian H^F. The method is simple to implement, does not require the computation of potential matrix elements, and is computationally more efficient than the traditional basis-set-expansion–variational method. We present detailed nonperturbative results of the intensity- and frequency-dependent complex quasienergies (ER,-Γ/2), the complex eigenvalues of H^F, providing directly the ac Stark shifts and multiphoton detachment rates of H. The laser intensity considered ranges from 1 to 40 GW/cm2 and the laser frequency covers 0.20–0.42 eV (in the c.m. frame). Finally we perform a simulation of intensity-averaged multiphoton detachment rates by considering the experimental conditions of the laser and H beams. The results (without any free parameters) are in good agreement with experimental data, both in absolute magnitude and in the threshold behavior.

This publication has 28 references indexed in Scilit: