Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK)

Abstract
The subject of our observations was the spontaneous behaviour of normal and transfected human epidermal keratinocytes. Cell movements were recorded on video micrographs and analyzed by a mathematical approach, using new methods of image processing and statistical correlation analysis. Protrusive activity of single lamellae was examined using one-dimensional analysis of phase-contrast image sequences along section lines transversal to the cell edge. This method revealed high periodicity and correlation in the motility patterns of lamellae and ruffles. Two-dimensional correlation analysis of automatically digitized cell outlines was applied to detect spatiotemporal patterns and coordination of lamellar extension and retraction. Most cells showed regularly alternating pulsations of lamellar protrusions. In some extreme cases, extension waves rotating around the cell periphery were observed. The results were compared with computer simulations of two simple models for lamellar dynamics and shape deformation, based on few assumptions about chemical kinetics of F-actin and cytomechanical properties of the actin network, neglecting regulatory effects of actin-associated proteins or extracellular-stimulations. The simulation results reproduced the main dynamical features of the observed real cells, indicating the possibility that the basic universal mechanism for lateral coordination of lamellipodial protrusion is the interplay between hydrostatic pressure and viscocontractile tension in the cortical F-actin – plasma membrane complex.Key words: keratinocytes, cytomechanics, actin network, statistical correlation analysis, mathematical models.