Superior feature-set ranking for small samples using bolstered error estimation
Open Access
- 28 October 2004
- journal article
- research article
- Published by Oxford University Press (OUP) in Bioinformatics
- Vol. 21 (7) , 1046-1054
- https://doi.org/10.1093/bioinformatics/bti081
Abstract
Motivation: Ranking feature sets is a key issue for classification, for instance, phenotype classification based on gene expression. Since ranking is often based on error estimation, and error estimators suffer to differing degrees of imprecision in small-sample settings, it is important to choose a computationally feasible error estimator that yields good feature-set ranking. Results: This paper examines the feature-ranking performance of several kinds of error estimators: resubstitution, cross-validation, bootstrap and bolstered error estimation. It does so for three classification rules: linear discriminant analysis, three-nearest-neighbor classification and classification trees. Two measures of performance are considered. One counts the number of the truly best feature sets appearing among the best feature sets discovered by the error estimator and the other computes the mean absolute error between the top ranks of the truly best feature sets and their ranks as given by the error estimator. Our results indicate that bolstering is superior to bootstrap, and bootstrap is better than cross-validation, for discovering top-performing feature sets for classification when using small samples. A key issue is that bolstered error estimation is tens of times faster than bootstrap, and faster than cross-validation, and is therefore feasible for feature-set ranking when the number of feature sets is extremely large. Availability: We provide a companion website, which contains the complete set of tables and plots regarding the simulation study, and a compilation of references on feature-set ranking with applications in Genomics. The companion website can be accessed at the URL http://ee.tamu.edu/~edward/bolster_ranking Contact:edward@ee.tamu.eduKeywords
This publication has 17 references indexed in Scilit:
- Bolstered error estimationPattern Recognition, 2004
- Is cross-validation valid for small-sample microarray classification?Bioinformatics, 2004
- Is cross-validation better than resubstitution for ranking genes?Bioinformatics, 2004
- A Gene-Expression Signature as a Predictor of Survival in Breast CancerNew England Journal of Medicine, 2002
- Gene expression profiling predicts clinical outcome of breast cancerNature, 2002
- Small sample issues for microarray‐based classificationComparative and Functional Genomics, 2001
- Comparison of algorithms that select features for pattern classifiersPattern Recognition, 2000
- Small sample size effects in statistical pattern recognition: recommendations for practitionersPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1991
- Estimating the Error Rate of a Prediction Rule: Improvement on Cross-ValidationJournal of the American Statistical Association, 1983
- Bootstrap Methods: Another Look at the JackknifeThe Annals of Statistics, 1979