Control of actin polymerization in live and permeabilized fibroblasts.
Open Access
- 1 August 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 114 (3) , 503-513
- https://doi.org/10.1083/jcb.114.3.503
Abstract
We have investigated the spatial control of actin polymerization in fibroblasts using rhodamine-labeled muscle actin in; (a) microinjection experiments to follow actin dynamics in intact cells, and (b) incubation with permeabilized cells to study incorporation sites. Rhodamine-actin was microinjected into NIH-3T3 cells which were then fixed and stained with fluorescein-phalloidin to visualize total actin filaments. The incorporation of newly polymerized actin was assayed using rhodamine/fluorescein ratio-imaging. The results indicated initial incorporation of the injected actin near the tip and subsequent transport towards the base of lamellipodia at rates greater than 4.5 microns/min. Furthermore, both fluorescein- and rhodamine-intensity profiles across lamellipodia revealed a decreasing density of actin filaments from tip to base. From this observation and the presence of centripetal flux of polymerized actin we infer that the actin cytoskeleton partially disassembles before it reaches the base of the lamellipodium. In permeabilized cells we found that, in agreement with the injection studies, rhodamine-actin incorporated predominantly in a narrow strip of less than 1-microns wide, located at the tip of lamellipodia. The critical concentration for the rhodamine-actin incorporation (0.15 microM) and its inhibition by CapZ, a barbed-end capping protein, indicated that the nucleation sites for actin polymerization most likely consist of free barbed ends of actin filaments. Because any potential monomer-sequestering system is bypassed by addition of exogenous rhodamine-actin to the permeabilized cells, these observations indicate that the localization of actin incorporation in intact cells is determined, at least in part, by the presence of specific elongation and/or nucleation sites at the tips of lamellipodia and not solely by localized desequestration of subunits. We propose that the availability of the incorporation sites at the tips of lamellipodia is because of capping activities which preferentially inhibit barbed-end incorporation elsewhere in the cell, but leave barbed ends at the tips of lamellipodia free to add subunits.Keywords
This publication has 42 references indexed in Scilit:
- Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear peripheryCell, 1990
- Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells.The Journal of cell biology, 1990
- Identification of actin nucleation activity and polymerization inhibitor in ameboid cells: their regulation by chemotactic stimulation.The Journal of cell biology, 1989
- Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.The Journal of cell biology, 1988
- Centripetal transport of cytoplasm, actin, and the cell surface in lamellipodia of fibroblastsCell Motility, 1988
- The actin cytoskeletonElectron Microscopy Reviews, 1988
- Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments.The Journal of cell biology, 1986
- Pattern and time course of rhodamine-actin incorporation in cardiac myocytes.The Journal of cell biology, 1983
- Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recoveryCell, 1982
- Isolation of concanavalin a caps during various stages of formation and their association with actin and myosinThe Journal of cell biology, 1979