Light distribution by linear diffusing sources for photodynamic therapy

Abstract
The distribution of the light emitted by linear light diffusers commonly employed in photodynamic therapy (PDT) has been investigated. A device is presented which measures the angular distribution of the exiting light at each point of the diffuser. With these data the fluence rate in air or in a cavity at some distance from the diffuser can be predicted. The results show that the light is scattered from the diffuser predominantly in the forward direction. Experiments and calculations show that the fluence rate in air and in a cavity of scattering tissue at some distance from the diffuser has a maximum near the tip of the diffuser, instead of near the middle. However, the fluence rate resulting from an interstitial diffuser in a purely scattering tissue phantom shows a maximum in the bisecting plane of the diffuser as would be predicted when the diffuser emitted light isotropically. The scattering nature of the tissue is expected to cancel the anisotropy of the diffuser.