The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa

Abstract
Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effects of beneficial mutations are exponentially distributed where the fitness of the wild type is moderate to high. However, when the fitness of the wild type is low, the data no longer follow an exponential distribution, because many beneficial mutations have large effects on fitness. There is no existing population genetic theory to explain this bias towards mutations of large effects, but it can be readily explained by the underlying biochemistry of rifampicin–RNA polymerase interactions. These results demonstrate the limitations of current population genetic theory for predicting adaptation to severe sources of stress, such as antibiotics, and they highlight the utility of integrating statistical and biophysical approaches to adaptation. Adaptation by natural selection depends on the spread of novel beneficial mutations, and one of the most important challenges in our understanding of adaptation is to be able to predict how beneficial mutations impact fitness. Here, we investigate the underlying distribution of fitness effects of beneficial mutations that natural selection acts on during the evolution of antibiotic resistance in the opportunistic human pathogen P. aeruginosa. When the fitness of the wild type is high, most beneficial mutations have small effects. This finding is consistent with existing population genetic models of adaptation based on statistical theory. When the fitness of the wild type is low, most beneficial mutations have large effects. This distribution cannot be explained by population genetic theory, but it can be readily understood by considering the biochemical basis of resistance. This study confirms an important prediction of population genetic theory, and it highlights the need to integrate statistical and biochemical approaches to adaptation in order to understand evolution in stressful environments, such as those provided by antibiotics.