Temperature Dependent Gene Expression Induced by PNIPAM-Based Copolymers: Potential of Hyperthermia in Gene Transfer

Abstract
The objective of this work was to obtain gene delivery vectors with high efficiency induced by application of local hyperthermia. As a building construct for the polyplex particles, block copolymers were used, in which one block represents poly(ethyleneimine) (PEI) and another block a statistical copolymer of poly(N-isopropylacryamide) (PNIPAM) and different hydrophilic monomers (acrylamide or vinylpyrrolidinone). The block copolymers were synthesizized by radical polymerization of the corresponding monomers directly onto PEI. The complexation of DNA with these copolymers led to small, charge neutral particles, which aggregated upon increasing the temperature from 37 degrees C to 42 degrees C. This aggregation was found to be responsible for the enhanced transfection efficiency of these formulations under hyperthermic conditions. Gene expression in cells treated by hyperthermia was found to be nearly 2 orders of magnitude higher in comparison to cells transfected at physiological temperature. The mechanism by which hyperthermia influences the gene transfection efficiency is proposed.