Abstract
Kristof has derived a theorem on the maximum and minimum of the trace of matrix products of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} $$X_1 \hat \Gamma _1 X_2 \hat \Gamma _2 \cdots X_n \hat \Gamma _n$$ where the matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} $$\hat \Gamma _i$$ are diagonal and fixed and the Xi vary unrestrictedly and independently over the set of orthonormal matrices. The theorem is a useful tool in deriving maxima and minima of matrix trace functions subject to orthogonality constraints. The present paper contains a generalization of Kristof's theorem to the case where the Xi are merely required to be submatrices of orthonormal matrices and to have a specified maximum rank. The generalized theorem contains the Schwarz inequality as a special case. Various examples from the psychometric literature, illustrating the practical use of the generalized theorem, are discussed.

This publication has 3 references indexed in Scilit: