Nanomechanical hydrogen sensing

Abstract
A nanomechanical beam resonator is used as a sensitive, specific hydrogen sensor. The beam is fabricated from AuPd alloy and tested by magnetomotive transduction at room temperature. The fundamental resonance frequency decreases significantly and reversibly at hydrogen pressures above 105Torr , whereas the frequency shifts observed for other gases are significantly smaller. The large frequency shift is likely due to the formation of interstitial hydrogen in the metal alloy lattice, which relieves the built-in tensile stress in the resonator beam. The uptake of hydrogen as measured by frequency shift is consistent with previous studies.