Leaf and root osmotic adjustment in drought-stressed Quercusalba, Q. macrocarpa, and Q. stellata seedlings

Abstract
The leaf and root tissue water relations of Quercusalba L., Quercusmacrocarpa Michx., and Quercusstellata Wang. seedlings before and after drought were examined to evaluate the occurrence and comparative extent of osmotic adjustment in seedlings of these species. Drought resulted in active osmotic adjustment in leaves of all three species, with decreases in osmotic potential at full tissue hydration and at the turgor loss point from 0.25 to 0.60 MPa. Active osmotic adjustment in Q. stellata, and increased root tissue elasticity in Q. macrocarpa and Q. alba, resulted in turgor loss of roots occurring at a water potential 0.36 to 0.66 MPa lower in drought-stressed than in well-watered seedlings. Species differed in tissue water relations only before drought, with Q. stellata exhibiting lower osmotic potentials than Q. alba and Q. macrocarpa. Estimates of the osmotic potential at full saturation were generally lower in leaves than in roots, but the osmotic potential at turgor loss was similar. Roots exhibited turgor loss at lower values of relative water content and experienced a more gradual decrease in water potential per unit water content during dehydration than did leaves. This response indicates greater relative tissue capacitance in roots than in leaves in these species.