Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide
Open Access
- 1 January 1983
- journal article
- research article
- Published by Springer Nature in British Journal of Cancer
- Vol. 47 (1) , 15-26
- https://doi.org/10.1038/bjc.1983.2
Abstract
Isophosphoramide mustard was synthesized and was found to demonstrate activity essentially comparable to cyclophosphamide and ifosfamide against L1210 and P388 leukaemia. Lewis lung carcinoma, mammary adenocarcinoma 16/C, ovarian sarcoma M5076, and colon tumour 6A, in mice and Yoshida ascitic sarcoma in rats. At doses less than, or equivalent to, the LD10, isophosphoramide mustard retained high activity against cyclophosphamide-resistant L1210 and P388 leukaemias, but was less active against intracerebrally-implanted P388 leukaemia while cyclophosphamide produced a 4 log10 tumour cell reduction. It was also less active (one log10 lower cell kill) than cyclophosphamide against the B16 melonoma. Metabolism studies on ifosfamide in mice identified isophosphoramide mustard in blood. In addition, unchanged drug, carboxyifosfamide, 4-ketoifosfamide, dechloroethyl cyclophosphamide, dechloroethylifosfamide, and alcoifosfamide were identified. The latter 4 metabolites were also identified in urine from an ifosfamide-treated dog. In a simulated in vitro pharmacokinetic experiment against L1210 leukaemia in which drugs were incubated at various concentrations for various times, both 4-hydroxycyclophosphamide and isophosphoramide mustard exhibited significant cytoxicity at concentration times time values of 100-1000 micrograms X min ml-1, while acrolein was significantly cytotoxic at 10 micrograms X min ml-1. Treatment of mice with drug followed by L1210 cells demonstrated a shorter duration of effective levels of cytotoxic activity for isophosphoramide mustard and phosphoramide mustard in comparison with cyclophosphamide and ifosfamide. Isophosphoramide mustard and 2-chloroethylamine, a potential hydrolysis product of isophosphoramide mustard and carboxyifosfamide, were less mutagenic in the standard Ames test than the 2 corresponding metabolites of cyclophosphamide [phosphoramide mustard and bis(2-chloroethyl)amine].Keywords
This publication has 27 references indexed in Scilit:
- Alkylating properties of phosphoramide mustard.1976
- The enzymatic basis of the selective action of cyclophosphamide.1975
- Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity testMutation Research/Environmental Mutagenesis and Related Subjects, 1975
- Isolation and mass spectral identification of blood metabolities of cyclophosphamide: Evidence for phosphoramide mustard as the biologically active metaboliteJournal of Mass Spectrometry, 1975
- Synthesis and metabolic behavior of the suggested active species of isophosphamide having cytostatic activityJournal of Medicinal Chemistry, 1974
- Metabolism of iphosphamide (2-(2-chloroethylamino)-3-(2-chloroethyl)tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide) and production of a toxic iphosphamide metabolite.1973
- Isophosphamide as a new acrolein-producing antineoplastic isomer of cyclophosphamide.1972
- Metabolism of cyclophosphamide by sheepJournal of Agricultural and Food Chemistry, 1972
- [Alkylans-alkylandum reactions. 4. 2-chlorethylamine and phosphamide compounds as alkylants].1971
- [New nitrogen mustard phosphamide esters and their cytostatic activity].1968