Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis
- 1 September 1997
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 179 (18) , 5849-5853
- https://doi.org/10.1128/jb.179.18.5849-5853.1997
Abstract
The Caulobacter crescentus histidine kinase genes pleC and divJ have been implicated in the regulation of polar morphogenesis and cell division, respectively. Mutations in pleC also potentiate the cell division phenotype of divJ mutations. To investigate the involvement of the PleC kinase in motility and cell cycle regulation, we carried out a pseudoreversion analysis of the divJ332 allele, which confers a temperature-sensitive motility (Mot-) phenotype. All cold-sensitive pseudorevertants with a Mot+ phenotype at 37 degrees C and a cold-sensitive swarm phenotype in soft agar at 24 degrees C contained extragenic suppressors that were null mutations mapping to pleC. Instead of a cell division defect at the nonpermissive temperature, however, revertants displayed a cold-sensitive defect in chemotaxis (Che-). In addition, the mutant cells were also supermotile, a phenotype previously associated only with mutations in the response regulator gene pleD that block the loss of motility. We also found that the Mot- defect of pleC mutants is suppressed by a pleD301/pleD+ merodiploid and results in a similar, supermotile, cold-sensitive Che- phenotype. These results implicate signal transduction pathways mediated by PleC-DivK and DivJ-PleD in the regulation of chemotaxis as well as motility. We discuss these findings and the observation that although the PleC kinase does not play an indispensable role in cell division, a temperature-sensitive allele of pleC (pleC319) has severely reduced viability under stringent growth conditions.Keywords
This publication has 30 references indexed in Scilit:
- Signal transduction in the cell cycle regulation of Caulobacter differentiationTrends in Microbiology, 1996
- Cell Cycle Control by an Essential Bacterial Two-Component Signal Transduction ProteinCell, 1996
- THE EXPRESSION OF ASYMMETRY DURING CAULOBACTER CELL DIFFERENTIATIONAnnual Review of Biochemistry, 1994
- Structural conservation in the CheY superfamilyBiochemistry, 1993
- Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis.1993
- Signal transduction schemes of bacteriaCell, 1993
- Requirement of the Carboxyl Terminus of a Bacterial Chemoreceptor for Its Targeted ProteolysisScience, 1993
- A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus.Proceedings of the National Academy of Sciences, 1993
- A histidine protein kinase homologue required for regulation of bacterial cell division and differentiation.Proceedings of the National Academy of Sciences, 1992
- REGULATION OF THE CELL DIVISION CYCLE AND DIFFERENTIATION IN BACTERIAAnnual Review of Microbiology, 1990