Abstract
We present a simple analytic proof of the inequality of P. Buser showing the equivalence of the first eigenvalue of a compact Riemannian manifold without boundary and Cheeger's isoperimetric constant under a lower bound on the Ricci curvature. Our tools are the Li-Yau inequality and ideas of Varopoulos in his functional approach to isoperimetric inequalities and heat kernel estimates on groups and manifolds. The method is easily modified to yield a logarithmic isoperimetric inequality involving the hypercontractivity constant of the manifold.

This publication has 14 references indexed in Scilit: