Forecasting future values of changing sequences

Abstract
Sequences of independent random variables are observed and on the basis of these observations future values of the process are forecast. The Bayesian predictive density of k future observations for normal, exponential, and binomial sequences which change exactly once are analyzed for several cases. It is seen that the Bayesian predictive densities are mixtures of standard probability distributions. For example, with normal sequences the Bayesian predictive density is a mixture of either normal or t-distributions, depending on whether or not the common variance is known. The mixing probabilities are the same as those occurring in the corresponding posterior distribution of the mean(s) of the sequence. The predictive mass function of the number of future successes that will occur in a changing Bernoulli sequence is computed and point and interval predictors are illustrated.