Multi-wall carbon nanotubes as quantum dots
Preprint
- 3 October 2001
Abstract
We have measured the differential conductance dI/dV of individual multi-wall carbon nanotubes (MWNT) of different lengths. A cross-over from wire-like (long tubes) to dot-like (short tubes) behavior is observed. dI/dV is dominated by random conductance fluctuations (UCF) in long MWNT devices (L=2...7 $\mu m$), while Coulomb blockade and energy level quantization are observed in short ones (L=300 nm). The electron levels of short MWNT dots are nearly four-fold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g-factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S=0 -> 1/2 -> 0... In addition, a Kondo enhancement of the conductance is observed when the number of electrons on the tube is odd.Keywords
All Related Versions
- Version 1, 2001-10-03, ArXiv
- Published version: Physical Review Letters, 88 (15), 156801.
This publication has 0 references indexed in Scilit: