Abstract
Let R, C be the additive groups of the real, complex numbers respectively. Using the Axiom of Choice (A.C.), these groups may be shown to be isomorphic. We show that this cannot be proved in Zermelo-Fraenkel set theory (see e.g. Fraenkel, Bar-Hillel and Levy (1973)) without the additional assumption of A.C. This is one of the most “concrete” used of the Axiom of Choice of which I know. THEOREM 1 (assuming (A.C)). CR.

This publication has 1 reference indexed in Scilit: