Abstract
A study of the gauged Wess-Zumino-Witten models is given focusing on the effect of topologically non-trivial configurations of gauge fields. A correlation function is expressed as an integral over a moduli space of holomorphic bundles with quasi-parabolic structure. Two actions of the fundamental group of the gauge group is defined: One on the space of gauge invariant local fields and the other on the moduli spaces. Applying these in the integral expression, we obtain a certain identity which relates correlation functions for configurations of different topologies. It gives an important information on the topological sum for the partition and correlation functions.

This publication has 0 references indexed in Scilit: