Abstract
An analytical investigation is made of the stresses due to external forces and moments acting on an elastic nonradial circular cylindrical nozzle attached to a spherical shell. The nozzle (a cylindrical shell) is nonradial in the sense that its axis is inclined and does not pass through the center of the sphere. Results are obtained by combining solutions from shell theory by a Galerkin-type method so as to satisfy boundary conditions at the intersection of the two shells. It is found that, as the nozzle inclination increases, the stresses change gradually from those previously given by Bijlaard for the radial nozzle.

This publication has 0 references indexed in Scilit: